A chatbot that functions through machine learning has an artificial neural network inspired by the neural nodes of the human brain. The bot is programmed to self-learn as it is introduced to new dialogues and words. In effect, as a chatbot receives new voice or textual dialogues, the number of inquiries that it can reply and the accuracy of each response it gives increases. Facebook has a machine learning chatbot that creates a platform for companies to interact with their consumers through the Facebook Messenger application. Using the Messenger bot, users can buy shoes from Spring, order a ride from Uber, and have election conversations with the New York Times which used the Messenger bot to cover the 2016 presidential election between Hilary Clinton and Donald Trump. If a user asked the New York Times through his/her app a question like “What’s new today?” or “What do the polls say?” the bot would reply to the request.

We need to know the specific intents in the request (we will call them as entities), for eg — the answers to the questions like when?, where?, how many? etc., that correspond to extracting the information from the user request about datetime, location, number respectively. Here datetime, location, number are the entities. Quoting the above weather example, the entities can be ‘datetime’ (user provided information) and location(note — location need not be an explicit input provided by the user and will be determined from the user location as default, if nothing is specified).

If your interaction with a conversational bot is through a specific menu (where you interact through buttons but the bot does not understand natural language input), chances are you are talking to a bot with structured questions and responses. This type of bot is usually applied on messenger platforms for marketing purposes. They are great at conducting surveys, generating leads, and sending daily content pieces or newsletters.
The chatbot uses keywords that users type in the chat line and guesses what they may be looking for. For example, if you own a restaurant that has vegan options on the menu, you might program the word “vegan” into the bot. Then when users type in that word, the return message will include vegan options from the menu or point out the menu section that features these dishes.
2. Flow-based: these work on user interaction with buttons and text. If you have used Matthew’s chatbot, that is a flow-based chatbot. The chatbot asks a question then offers options in the form of buttons (Matthew’s has a yes/no option). These are more limited, but you get the possibility of really driving down the conversation and making sure your users don’t stray off the path.
Kik Messenger, which has 275 million registered users, recently announced a bot store. This includes one bot to send people Vine videos and another for getting makeup suggestions from Sephora. Twitter has had bots for years, like this bot that tweets about earthquakes as soon as they’re registered or a Domino’s bot that allows you to order a pizza by tweeting a pizza emoji.
Like most of the Applications, the Chatbot is also connected to the Database. The knowledge base or the database of information is used to feed the chatbot with the information needed to give a suitable response to the user. Data of user’s activities and whether or not your chatbot was able to match their questions, is captured in the data store. NLP translates human language into information with a combination of patterns and text that can be mapped in the real time to find applicable responses.

Intents: It is basically the action chatbot should perform when the user say something. For instance, intent can trigger same thing if user types “I want to order a red pair of shoes”, “Do you have red shoes? I want to order them” or “Show me some red pair of shoes”, all of these user’s text show trigger single command giving users options for Red pair of shoes.
Alternatively, think about the times you are chatting with a colleague over Slack. The need to find relevant information typically happens during conversations, and instead of having to go to a browser to start searching, you could simply summon your friendly Slack chatbot and get it to do the work for you. Think of it as your own personal podcast producer – pulling up documents, facts, and data at the drop of a hat. This concept can be translated into the virtual assistants we use on the daily. Think about an ambient assistant like Alexa or Google Home that could just be part of a group conversation. Or your trusted assistant taking notes and actions during a meeting.

Respect the conversational UI. The full interaction should take place natively within the app. The goal is to recognize the user's intent and provide the right content with minimum user input. Every question asked should bring the user closer to the answer they want. If you need so much information that you're playing a game of 20 Questions, then switch to a form and deliver the content another way.


Three main reasons are often cited for this reluctance: the first is the human side—they think users will be reluctant to engage with a bot. The other two have more to do with bots’ expected performance: there is skepticism that bots will be able to appropriately incorporate history and context to create personalized experiences and believe they won’t be able to adequately understand human input.
The plugin aspect to Chatfuel is one of the real bonuses. You can link up to all sorts of different services to add richer content to the conversations that you're having. This includes linking up to Twitter, Instagram and YouTube, as well as being able to request that the user share their location, serve video and audio content, and build out custom attributes that can be used to segment users based on their inputs. This last part is a killer feature.
As discussed earlier here also, each sentence is broken down into different words and each word then is used as input for the neural networks. The weighted connections are then calculated by different iterations through the training data thousands of times. Each time improving the weights to making it accurate. The trained data of neural network is a comparable algorithm more and less code. When there is a comparably small sample, where the training sentences have 200 different words and 20 classes, then that would be a matrix of 200×20. But this matrix size increases by n times more gradually and can cause a huge number of errors. In this kind of situations, processing speed should be considerably high.

One pertinent field of AI research is natural language processing. Usually, weak AI fields employ specialized software or programming languages created specifically for the narrow function required. For example, A.L.I.C.E. utilises a markup language called AIML, which is specific to its function as a conversational agent, and has since been adopted by various other developers of, so called, Alicebots. Nevertheless, A.L.I.C.E. is still purely based on pattern matching techniques without any reasoning capabilities, the same technique ELIZA was using back in 1966. This is not strong AI, which would require sapience and logical reasoning abilities.

Previous generations of chatbots were present on company websites, e.g. Ask Jenn from Alaska Airlines which debuted in 2008[27] or Expedia's virtual customer service agent which launched in 2011.[27][28] The newer generation of chatbots includes IBM Watson-powered "Rocky", introduced in February 2017 by the New York City-based e-commerce company Rare Carat to provide information to prospective diamond buyers.[29][30]
×