Facebook has jumped fully on the conversational commerce bandwagon and is betting big that it can turn its popular Messenger app into a business messaging powerhouse. The company first integrated peer-to-peer payments into Messenger in 2015, and then launched a full chatbot API so businesses can create interactions for customers to occur within the Facebook Messenger app. You can order flowers from 1–800-Flowers, browse the latest fashion and make purchases from Spring, and order an Uber, all from within a Messenger chat.
At a high level, a conversational bot can be divided into the bot functionality (the "brain") and a set of surrounding requirements (the "body"). The brain includes the domain-aware components, including the bot logic and ML capabilities. Other components are domain agnostic and address non-functional requirements such as CI/CD, quality assurance, and security.
Need a Facebook bot? Well, look no further, as Chatfuel makes it easy for you to create your own Facebook and Telegram Chatbot without any coding experience necessary. It works by letting users link to external sources through plugins. Eventually, the platforms hope to open itself to third-party plugins, so anyone can contribute their own plugins and have others benefit from them.
Logging. Log user conversations with the bot, including the underlying performance metrics and any errors. These logs will prove invaluable for debugging issues, understanding user interactions, and improving the system. Different data stores might be appropriate for different types of logs. For example, consider Application Insights for web logs, Cosmos DB for conversations, and Azure Storage for large payloads. See Write directly to Azure Storage.
Feine, J., Morana, S., and Maedche, A. (2019). “Leveraging Machine-Executable Descriptive Knowledge in Design Science Research ‐ The Case of Designing Socially-Adaptive Chatbots”. In: Extending the Boundaries of Design Science Theory and Practice. Ed. by B. Tulu, S. Djamasbi, G. Leroy. Cham: Springer International Publishing, pp. 76–91. Download Publication

Chatbots can perform a range of simple transactions. Telegram bots let users transfer money, buy train tickets, book hotel rooms, and more. AI chatbots are especially sought-after in the retail industry. WholeFoods, a healthy food store chain in the US, uses a chatbot to help customers find the nearest store. The 1-800-Flowers chatbot lets customers order flowers and gifts. In the image below, you can see more ways you might use AI chatbots for your business.
A virtual assistant is an app that comprehends natural, ordinary language voice commands and carries out tasks for the users. Well-known virtual assistants include Amazon Alexa, Apple’s Siri, Google Now and Microsoft’s Cortana. Also, virtual assistants are generally cloud-based programs so they need internet-connected devices and/or applications in order to work. Virtual assistants can perform tasks like adding calendar appointments, controlling and checking the status of a smart home, sending text messages, and getting directions.
The sentiment analysis in machine learning uses language analytics to determine the attitude or emotional state of whom they are speaking to in any given situation. This has proven to be difficult for even the most advanced chatbot due to an inability to detect certain questions and comments from context. Developers are creating these bots to automate a wider range of processes in an increasingly human-like way and to continue to develop and learn over time.
To envision the future of chatbots/virtual assistants, we need to take a quick trip down memory lane. Remember Clippy? Love him or hate him, he’s ingrained in our memory as the little assistant who couldn’t (sorry, Clippy.).  But someday, this paper clip could be the chosen one. Imagine with me if you will a support agent speaking with a customer over the phone, or even chat support. Clippy could be listening in, reviewing the questions the customer is posing, and proactively providing relevant content to the support agent. Instead of digging around from system to system, good ‘ole Clippy would have their back, saving them the trouble of hunting down relevant information needed for the task at hand.
1. AI-based: these ones really rely on training and are fairly complicated to set up. You train the chatbot to understand specific topics and tell your users which topics your chatbot can engage with. AI chatbots require all sorts of fall back and intent training. For example, let’s say you built a doctor chatbot (off the top of my head because I am working on one at the moment), it would have to understand that “i have a headache” and “got a headache” and “my head hurts” are the same intent. The user is free to engage and the chatbot has to pick things up.

Interface designers have come to appreciate that humans' readiness to interpret computer output as genuinely conversational—even when it is actually based on rather simple pattern-matching—can be exploited for useful purposes. Most people prefer to engage with programs that are human-like, and this gives chatbot-style techniques a potentially useful role in interactive systems that need to elicit information from users, as long as that information is relatively straightforward and falls into predictable categories. Thus, for example, online help systems can usefully employ chatbot techniques to identify the area of help that users require, potentially providing a "friendlier" interface than a more formal search or menu system. This sort of usage holds the prospect of moving chatbot technology from Weizenbaum's "shelf ... reserved for curios" to that marked "genuinely useful computational methods".