The most advanced bots are powered by artificial intelligence, helping it to understand complex requests, personalize responses, and improve interactions over time. This technology is still in its infancy, so most bots follow a set of rules programmed by a human via a bot-building platform. It's as simple as ordering a list of if-then statements and writing canned responses, often without needing to know a line of code.
The educators or class organizers can opt for chatbots to simplify daily routine tasks. Chatbots may serve as a helping hand to the teacher in dealing with the daily queries by allowing bots to answer the questions of students on a daily basis, or perhaps even check their homework. Eventually, they offer teachers more time to work with their students on a one-by-one basis.
The front-end app you develop will interact with an AI application. That AI application—usually a hosted service—is the component that interprets user data, directs the flow of the conversation and gathers the information needed for responses. You can then implement the business logic and any other components needed to enable conversations and deliver results.
The chatbot is trained to translate the input data into a desired output value. When given this data, it analyzes and forms context to point to the relevant data to react to spoken or written prompts. Looking into deep learning within AI, the machine discovers new patterns in the data without any prior information or training, then extracts and stores the pattern.

If it happens to be an API call / data retrieval, then the control flow handle will remain within the ‘dialogue management’ component that will further use/persist this information to predict the next_action, once again. The dialogue manager will update its current state based on this action and the retrieved results to make the next prediction. Once the next_action corresponds to responding to the user, then the ‘message generator’ component takes over.
This is a lot less complicated than it appears. Given a set of sentences, each belonging to a class, and a new input sentence, we can count the occurrence of each word in each class, account for its commonality and assign each class a score. Factoring for commonality is important: matching the word “it” is considerably less meaningful than a match for the word “cheese”. The class with the highest score is the one most likely to belong to the input sentence. This is a slight oversimplification as words need to be reduced to their stems, but you get the basic idea.
ELIZA's key method of operation (copied by chatbot designers ever since) involves the recognition of clue words or phrases in the input, and the output of corresponding pre-prepared or pre-programmed responses that can move the conversation forward in an apparently meaningful way (e.g. by responding to any input that contains the word 'MOTHER' with 'TELL ME MORE ABOUT YOUR FAMILY').[9] Thus an illusion of understanding is generated, even though the processing involved has been merely superficial. ELIZA showed that such an illusion is surprisingly easy to generate, because human judges are so ready to give the benefit of the doubt when conversational responses are capable of being interpreted as "intelligent".
×