I will not go into the details of extracting each feature value here. It can be referred from the documentation of rasa-core link that I provided above. So, assuming we extracted all the required feature values from the sample conversations in the required format, we can then train an AI model like LSTM followed by softmax to predict the next_action. Referring to the above figure, this is what the ‘dialogue management’ component does. Why LSTM is more appropriate? — As mentioned above, we want our model to be context aware and look back into the conversational history to predict the next_action. This is akin to a time-series model (pls see my other LSTM-Time series article) and hence can be best captured in the memory state of the LSTM model. The amount of conversational history we want to look back can be a configurable hyper-parameter to the model.

In a procedural conversation flow, you define the order of the questions and the bot will ask the questions in the order you defined. You can organize the questions into logical modules to keep the code centralized while staying focused on guiding the conversational. For example, you may design one module to contain the logic that helps the user browse for products and a separate module to contain the logic that helps the user create a new order.
Oh and by the way: We’ve been hard at work on some interesting projects at Coveo, one of those focusing squarely on the world of chatbots. We’ve leveraged our insight engine, and enabled it to work within the confines of your preferred chat tool: the power of Coveo, in chatbot form. The best part about our work in the field of chatbots? The code is out there in the wild waiting for you to utilize it, providing that you are already a customer or partner of Coveo. All you need to do is jump over to the Coveo Labs github page, download it, and get your hands dirty!
Let’s take a weather chat bot as an example to examine the capabilities of Scripted and Structured chatbots. The question “Will it rain on Sunday?” can be easily answered. However, if there is no programming for the question “Will I need an umbrella on Sunday?” then the query will not be understood by the chat bot. This is the common limitation with scripted and structured chatbots. However, in all cases, a conversational bot can only be as intelligent as the programming it has been given.
Of course, each messaging app has its own fine print for bots. For example, on Messenger a brand can send a message only if the user prompted the conversation, and if the user doesn't find value and opt to receive future notifications within those first 24 hours, there's no future communication. But to be honest, that's not enough to eradicate the threat of bad bots.
Two trends — the exploding popularity of mobile messaging apps and advances in artificial intelligence — are coinciding to enable a new generation of tools that enable brands to communicate with customers in powerful new ways at reduced cost. Retailers and technology firms are experimenting with chatbots, powered by a combination of machine learning, natural language processing, and live operators, to provide customer service, sales support, and other commerce-related functions.
The biggest benefit of having a conversational AI solution is the instant response rate. Answering queries within an hour translates into 7X increase in the likelihood of converting a lead. Customers are more likely to talk about a negative experience than a positive one. So nipping a negative review right in the bud is going to help improve your product’s brand standing.
Social networking bots are sets of algorithms that take on the duties of repetitive sets of instructions in order to establish a service or connection among social networking users. Various designs of networking bots vary from chat bots, algorithms designed to converse with a human user, to social bots, algorithms designed to mimic human behaviors to converse with behavioral patterns similar to that of a human user. The history of social botting can be traced back to Alan Turing in the 1950s and his vision of designing sets of instructional code that passes the Turing test. From 1964 to 1966, ELIZA, a natural language processing computer program created by Joseph Weizenbaum, is an early indicator of artificial intelligence algorithms that inspired computer programmers to design tasked programs that can match behavior patterns to their sets of instruction. As a result, natural language processing has become an influencing factor to the development of artificial intelligence and social bots as innovative technological advancements are made alongside the progression of the mass spreading of information and thought on social media websites.

One pertinent field of AI research is natural language processing. Usually, weak AI fields employ specialized software or programming languages created specifically for the narrow function required. For example, A.L.I.C.E. uses a markup language called AIML, which is specific to its function as a conversational agent, and has since been adopted by various other developers of, so called, Alicebots. Nevertheless, A.L.I.C.E. is still purely based on pattern matching techniques without any reasoning capabilities, the same technique ELIZA was using back in 1966. This is not strong AI, which would require sapience and logical reasoning abilities.