Next, identify the data sources that will enable the bot to interact intelligently with users. As mentioned earlier, these data sources could contain structured, semi-structured, or unstructured data sets. When you're getting started, a good approach is to make a one-off copy of the data to a central store, such as Cosmos DB or Azure Storage. As you progress, you should create an automated data ingestion pipeline to keep this data current. Options for an automated ingestion pipeline include Data Factory, Functions, and Logic Apps. Depending on the data stores and the schemas, you might use a combination of these approaches.
Pop-culture references to Skynet and a forthcoming “war against the machines” are perhaps a little too common in articles about AI (including this one and Larry’s post about Google’s RankBrain tech), but they do raise somewhat uncomfortable questions about the unexpected side of developing increasingly sophisticated AI constructs – including seemingly harmless chatbots.
In a traditional application, the user interface (UI) consists of a series of screens, and a single app or website can use one or more screens as needed to exchange information with the user. Most applications start with a main screen where users initially land, and that screen provides navigation that leads to other screens for various functions like starting a new order, browsing products, or looking for help.
3. Now, since ours is a conversational AI bot, we need to keep track of the conversations happened thus far, to predict an appropriate response. For this purpose, we need a dictionary object that can be persisted with information about the current intent, current entities, persisted information that user would have provided to bot’s previous questions, bot’s previous action, results of the API call (if any). This information will constitute our input X, the feature vector. The target y, that the dialogue model is going to be trained upon will be ‘next_action’ (The next_action can simply be a one-hot encoded vector corresponding to each actions that we define in our training data).

Disney invited fans of the movie to solve crimes with Lieutenant Judy Hopps, the tenacious, long-eared protagonist of the movie. Children could help Lt. Hopps investigate mysteries like those in the movie by interacting with the bot, which explored avenues of inquiry based on user input. Users can make suggestions for Lt. Hopps’ investigations, to which the chatbot would respond.

Chatbots can reply instantly to any questions. The waiting time is ‘virtually’ 0 (see what I did there?). Even if a real person eventually shows up to fix the issues, the customer gets engaged in the conversation, which can help you build trust. The problem could be better diagnosed, and the chatbot could perform some routine checks with the user. This saves up time for both the customer and the support agent. That’s a lot better than just recklessly waiting for a representative to arrive.

These are one of the major tools applied in machine learning. They are brain-inspired processing tools that actually replicate how humans learn. And now that we’ve successfully replicated the way we learn, these systems are capable of taking that processing power to a level where even greater volumes of more complex data can be understood by the machine.

[In] artificial intelligence ... machines are made to behave in wondrous ways, often sufficient to dazzle even the most experienced observer. But once a particular program is unmasked, once its inner workings are explained ... its magic crumbles away; it stands revealed as a mere collection of procedures ... The observer says to himself "I could have written that". With that thought he moves the program in question from the shelf marked "intelligent", to that reserved for curios ... The object of this paper is to cause just such a re-evaluation of the program about to be "explained". Few programs ever needed it more.[8]

×